· f is 1-1 if for each y in Range (f), there is exactly one x in the Domain (f) that f(x)=y. f is even if f(-x) = f(x) ? for all x.

f is odd of f(-x) = -f(x)• f' = the instaneous rate of change of f= the slope of the tangent fine to f. · f'>0 &> f increasing nearby.  $f' \ge 0 \implies f$  decreasing near by.  $f' = 0 \implies Stationary pt : f is not changing much near by$ Transform. f(x) + C: shift up by c units f(x+c): shift right by -c units. the fix): Scale vertically by ratio the. f(kx): scale horizontally by ratio /k -fix): vertical flip f(-x): horizoutal flip · Pin flx) = L = tim f(x) = fm f(x) = L. Continuous of is continuous at X=b, if f(x) = f(x) = f(x) = f(b)." Intermediate Value Theorom: IVT f continuous on Ia, b), then all intermediate values between fra ) and fib) one achieved. EVT · Extreme Value Theorem. f continues on [aib], then there is a maximum and a minimum MVT . Mean Value Theorem: f continues on  $[a_1b]$ , differentiable on  $(a_1b)$ , then there is  $CE(a_1b)$  that  $f'(c) = \frac{f(b) - f(a)}{b - a} = average rate of change of f between a, b.$ 

Limits:  $\lim_{x\to b} (f(x) \pm g(x)) = \lim_{x\to b} f(x) + \lim_{x\to b} g(x)$ · lim (f(x) g(x)) = (fim f(x)) (lim g(x))  $\frac{1}{x \rightarrow b} \left( \frac{f(x)}{g(x)} \right) = \frac{\lim_{x \rightarrow b} f(x)}{\lim_{x \rightarrow b} g(x)}$ · If h is continuous, tim h(g(x)) = h(lim g(x)) · f(x) < g(x) then lim f(x) < lim g(x) Sandwich . Sandwich theorem: if f(x) = g(x) = h(x), if fin f(x) = fin = h(x) = L, then tim g(x) = L. Concountry. First derivative test:  $\bigcup f'$  transitions  $- \rightarrow + \Rightarrow f$  concaves up.  $\Leftrightarrow local$  min  $\mathbb{Z}$  f' transitions  $+ \rightarrow + \circ v - \rightarrow - \Rightarrow M$  concavity  $\Leftrightarrow NOT$  local · Second derivative test: · f">0 => concoure up <>> local min , f" <> > Concoure down ⇒ local max. · f'' = 0 => NO Conclusion, use first derivortine test instead. · Inflection point: f''=0 and f'' changes signs  $(+\rightarrow -or-\rightarrow +)$  through. Optimization.

Critical point: 1) Stationary pt, Dend pt, & where f' does not exist. Approximation: Tangent line approximation: fix point b, f(x) & f(b) + f(b) (x-b).

· Overestimate if f concares down

Underestimate of f concaves up.

8.7 mm ruled × 30 lines

Derivortive 
$$(f+g)' = f'+g'$$

$$(f-g)' = f'-g'$$

$$(fg)' = f'g + fg'$$

$$(\frac{f}{g})' = \frac{f'g-fg'}{g^2}$$

- $\cdot (x^k)' = k x^{k-1}$ 
  - Horizontal asymptote for rational functions:

    small deg : y = 0.

  - equal deg =  $y = \frac{\text{leading coefficient}}{\text{leading boefficient}}$
  - · large deg po horizontal asymptotes, y > 00 or -00 depending on
  - $e^{x}$  grows fastor than any  $x^{k}$  (any k70) as  $x\to\infty$ , and ln(x) grows slower than any  $x^{k}$  (any k70) as  $x\to\infty$