(E) Exponential functions (S9.1, 9.2, 9.3)

Motivation: in microbiology, the speed of the population of microbe grows is often proportional to the population itself.

· Polynomials don't do the job we need. We need more functions.

Ex. Let f(t) = count of bacterias in a dish at t hours. We know

· the bacteria count doubles every hour.

• f(0) = 5.

Find the function f(t).

$$Sd^{N}$$
 t 0 | 2 3 4 5 $Af = f(t+1) - f(t)$
f(t) 5 | 10 20 40 80 | 160.
f will increase 5 | 10 20 40 80

 $f(1) = 5 \times 2$

$$f(2) = 5 \times 2 \times 2 = 5 \times 2^2$$

f (3) = 5 x 2 x 2 × 2 = 5 x 23.

t times

f(t) = 5 x 2x ··· x2 = 5 x 2 t

· At each time t, the amount of f will increase in the next hour is proportioned to fit).

Def. Exponential functions one fix = Cb^{x} , where $C \neq 0$, b > 0 are constants. Two protetypes:

• When b>1, function b^{\times} increases, and b^{\times} increases at a rate proportional to itself. We call b^{\times} exponentially increasing (growing):

- Larger bis, the faster be increases.

→ bx < 1 for x < 0, and bx > 1 for x > 0

• When $0 \le b \le 1$, function b^x decreases at a rate proportional to itself, we call b^x exponentially decreasing (decaying).

- > Smaller b is , faster bx decreases.
- $\rightarrow b^{x} > |$ on $x \ge 0$, $b^{x} \ge 1$ on x > 0
- -> lim bx =0
- · In both b>1 and 0<b<1,
- $\rightarrow b^x = 1$ at x = 0.
- \rightarrow $b^{x} > 0$ at any x.
- · Onick review of exponentials: for b>0.
 - $\bigcirc b^{\chi_1}b^{\chi_2} = b^{\chi_1 + \chi_2}$

Ex. A saving account promotes a monthly rate of 1%. I deposited 100 \$\frac{1}{2}\$ into the account at month 0. Find the formula for f(t) = balance at month t. Compute the yearly rate of return.

Sol." Let f(t) = Cbt, where b>1.

- t=0, $f(0) = Cb^0 = C = 100$, $f(t) = 100 b^t$.
- t = 1, $f(1) = Cb^1 = 100b = 100 \times (1 + 1\%) = 101$, so b = 1.01
- · fit) = 100(1.01)t
- · f(12) = 100 (1.01) 12 2 100 (1.1268) = 112.68.

16

Ex. The mass of radioactive substances = f(t) , cet t (mouths). It is known:

- · The mais decays exponentially in time.
- After 2 month, there is 160 kg left.
 After 6 month, there is 10 kg left.

ble those information, find out how much substances one those out the beginning, and how much is left refter 10 months. Find the half-life of the substance.

Solu. Assume $f(t) = Cb^t$. Since f(t) is exponentially decreasing, 0 < b < 1.

$$f(2) = Cb^2 = 160$$
 (1)
 $f(6) = Cb^6 = 10$

① divided by ∂ : $\frac{Cb^2}{Cb^6} = \frac{160}{10}$, $\frac{1}{54} = 16$, $\frac{1}{54} = \frac{1}{16}$, $\frac{1}{5^2} = \frac{1}{4}$, \frac

• $f(x) = C(\frac{1}{x})^2 = 160$, $C = 160 \times 4 = 640$.

 $So f(t) = 640 \left(\frac{1}{2}\right)^{t}$

· At beginning: f(0) = 640(1) = 640 (kg)

· At 10 month: $f(0) = 640 \left(\frac{1}{2}\right)^{10} = \frac{640}{1024} = 0.625 \left(\frac{1}{10}\right)$

· Half-life: amount of time for the news to decay to its half.

• That is, find t that $f(t) = \frac{1}{2}f(0) = \frac{1}{2}(640) = 320$,

Let $f(t) = 640 \left(\frac{1}{2}\right)^{t} = 320$. So $\left(\frac{1}{2}\right)^{t} = \frac{1}{2}$, t = 1.

-> Half-life = 1 month,

[2]

Ex A microbe has population 20 at t days. We know it grows exponentially and it takes 9 days for the microbe to double its population. How large is the population at 30 days in?

 \underline{Sol}^{N} . Let $\underline{f(t)} = Cb^{T}$. $\underline{f(t)} = grows exponentially$, so b > 1.

 $f(0) = Cb^{0} = C = 20$. $f(t) = 20b^{t}$. $f(9) = 20b^{9} = 20 \times 2 = 40$, so $b^{9} = 2$, $b = (b^{9})^{\frac{1}{9}} = 2^{\frac{1}{9}}$.

• $f(t) = 20(2^{\frac{1}{9}})^{\frac{1}{9}} = 20(2)^{\frac{10}{9}}$ • $f(30) = 20(2)^{\frac{30}{9}} = 20(2)^{\frac{10}{3}} \approx 20 \times 10.1 = 202$